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1. Motivation 
 
1) Continuous Dependence on Data 
 
    •  A good mathematical model should have continuous solutions w.r.t. the initial 

data 0 0,t x  and the system data µ  of ( , , )f t x µ -small errors in data yield 

solutions that are close (over some finite time interval) - Wellposedness!  
    •  This property is called continuous dependence on data. This continuously 

dependent property is not possible at points where the solution is not unique! 
Why ? 

 
Remark 4.1. The general form of the IVP is described by  

0 0

( , , )
( )

x f t x
x t x

µ′ =
 =

,                       ( Eµ ) 

where sT
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 = =

.          ( Hµ ) 

It is easy to show (Homework):  

a) ))(),(()( ttxtz µ=  is a solution of ( Hµ ) ⇔  )(tx  is a solution of ( Eµ ) and 

µµ ≡)(t ; 

b)  If ( Eµ ) has a unique solution, so does ( Hµ ).  

   Then ( Hµ ) has the same structure to ( E ). The only difference is their dimensions. 

For simplicity of notation, we still consider ( E ) just regarding 0t  and 0x  as 

parameter variables.  



 2 

 
2) Sensitivity of Variation on Data 
 

•  It is natural to ask differentiability for solutions w.r.t. data to characterize the 
sensitivity of variation on data – Differentiability Theorem.  

 
1. Continuous Dependence (Wellposedness) 
 
1) Wellposedness. The IVP ( E ) is called wellposed if there exists a unique solution 

0 0( , , )x t t x  which depends continuously on 0 0( , )t x .  

 

2) Continuous Dependence on Initial Data 0 0( , )t x  

The real initial value 0 0( , )t x  is obtained by measurement. Suppose the 

measured initial value is 0 0( , )t x  satisfying the following error condition.  

0
0 0| |

2
ht t− ≤ ;  0

0 0|| ||
2
bx x− ≤ , 

where 0 0
0 0( , )t x  is the nominal initial value such that the following IVP 

0 0
0 0

( , )
( )

x f t x
x t x
′ =

 =
                           ( 0E ) 

has a unique solution 0 0
0 0( , , )x t t x  in 

0 0
0 0{( , ) : | | , || || }nQ t x R R t t a x x b= ∈ × − ≤ − ≤ . 

Let 0 0
0 0 0 0 0 0{( , ) : | | , || || }

2 2
n h bU t x R R t t x x Q= ∈ × − ≤ − ≤ ⊆ . Then, we discuss 

the continuous property of 0 0( , , )x t t x  of ( E ) in the defined domain as follows. 

0
0 0 0 0 0{( , , ) : | | ; ( , ) }

2
n hG t t x R R R t t t x U= ∈ × × − ≤ ∈ . 

Theorem 4.1 Suppose that ( , )f t x  is continuous; Lipschitz on Q  and 0 0( , )t x U∈ . 

Then the solution 0 0( , , )x t t x  of ( E ) is continuous on 0 0( , , )t t x G∈ . 

Proof. First, we construct the Picard approximations 0 0{ ( , , )}nx t t x ( n N +∈ ) on 

0 0[ , ]t t h t h∈ − +  as follows. 

0 0 0 0( , , )x t t x x= , 0 0( , , )t t x G∈  



 3 

0
1 0 0 0 0 0 0 0 0( , , ) ( , ( , , )) , ( , , )

t

t
x t t x x f s x s t x ds t t x G= + ∈∫



 

0
1 0 0 0 0 0 0 0( , , ) ( , ( , , )) , ( , , )

t

n nt
x t t x x f s x s t x ds t t x G+ = + ∈∫



 

Remark 4.2 For each n N +∈ , 0 0( , , )nx t t x  is continuous on 0 0( , )t x  for the fixed 

0 0
0 0[ , ]

2 2
h ht t t∈ − + . Therefore, 0 0( , , )nx t t x  for each n N +∈  is continuous on 

0 0( , , )t t x G∈ .  

 

Remark 4.3 The reason of defining U  and G  as above. Since 0 0( , )t x U∈  in 

0 0{ ( , , )}nx t t x , the interval 0| |t t h− ≤  varies with 0t . Therefore, the intervals of 

0 0{ ( , , )}nx t t x  for each n N +∈  may not be the same in general. For a rigorous sense, 

we may find 

0
0 0

0 0
0 0 0 0

| |
2

[ , ] [ , ]
2 2 ht t

h ht t t h t h
− ≤

− + = − +  

that is a common interval of 0 0{ ( , , )}nx t t x  by using 0
0 0| |

2
ht t− ≤ . Therefore, 

0 0
0 0[ , ]

2 2
h ht t t∈ − +  is a reasonable common interval. That is, 0 0( , , )t t x G∈ .  

 
(Cont. of Proof for Theorem 4.1) It is the same to show that the Picard 

approximations 0 0{ ( , , )}nx t t x  is uniformly convergent to a function 0 0( , , )x t t x . That 

is,  
1 1

0 0
0 0 0 0 0 0 0 0|| ( , , ) ( , , ) || | | (| | | |)

! !

n n
n n

n
ML MLx t t x x t t x t t t t t t

n n

− −

− ≤ − ≤ − + −  

         
1 1

( )
! 2 2 !

n n
n nML h h ML h

n n

− −

≤ + = . 

Meanwhile, 0 0( , , )x t t x  is obviously a solution of E , which is continuous on 

0 0( , , )t t x G∈  because 0 0( , , )nx t t x  for each n N +∈  is continuous on 

0 0( , , )t t x G∈ .    
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2. Differentiability  
 

Theorem 4.2 Suppose that ( , )f t x  of ( E ) is of 2C  on Q  and 0 0( , )t x U∈ . Then 

the solution 0 0( , , )x t t x  of ( E ) is continuously differentiable on 0 0( , , )t t x G∈ .  

Proof. By Theorem 4.1, we take the Picard approximations 

        
0

1 0 0 0 0 0( , , ) ( , ( , , ))
t

n nt
x t t x x f s x s t x ds+ = + ∫ , n N +∈ , 0 0( , , )t t x G∈ , 

which is continuous on 0 0( , , )t t x G∈  for each n N +∈  and uniformly convergent 

to the solution 0 0( , , )x t t x of ( E ), which is continuous on 0 0( , , )t t x G∈ .  

Since ( , )xf t x′  is also continuously differentiable on Q , we construct an 

associated Picard matrix sequence as follows.  

0
1 0 0 0 0 0 0( , , ) ( , ( , , )) ( , , )

t

n n x n nt
Y t t x I f s x s t x Y t t x ds+ ′= + ∫ , 

where n N +∈  and 0 0( , , )t t x G∈ . It is similar to show that 0 0{ ( , , )}nY t t x  is well 

defined, continuous on 0 0( , , )t t x G∈  and uniformly convergent to 0 0( , , )Y t t x  that 

is continuous on 0 0( , , )t t x G∈  (Homework).   

Next, we remark 0 0 0
0 0 0

0

( , , )
( , , )n

x t t x
I Y t t x

x
∂

= =
∂

. Then by the definitions of 

0 0{ ( , , )}nx t t x  and 0 0{ ( , , )}nY t t x , we conclude by induction on n N +∈  that   

     0 0
0 0

0

( , , )
( , , )n

n

x t t x
Y t t x

x
∂

=
∂

, 0 0( , , )t t x G∈ , for each n N +∈ . 

Therefore, 0 0{ ( , , )}nY t t x  is a derivative sequence of 0 0{ ( , , )}nx t t x  wrt 0x . Since 

0 0{ ( , , )}nx t t x  and 0 0{ ( , , )}nY t t x  are both uniformly convergent, their limits are  

0 0
0 0

0

( , , )
( , , )

x t t x
Y t t x

x
∂

=
∂

, 0 0( , , )t t x G∈ .  

Then we conclude that 0 0

0

( , , )x t t x
x

∂

∂
 is continuous on 0 0( , , )t t x G∈ .  

    It is similar to show that  
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0

1 0 0 0 0
0 0 0 0

0 0

( , , ) ( , , )
( , ) ( , ( , , ))

tn n
x nt

x t t x x t t x
f t x f s x s t x ds

t t
+∂ ∂

′= − +
∂ ∂∫  

is well defined, continuous and uniformly convergent on 0 0( , , )t t x G∈ . Then we 

conclude that 0 0

0

( , , )x t t x
t

∂

∂
 is continuous on 0 0( , , )t t x G∈  (Homework).    

 
We have simultaneously proved the following theorem. 

 

Theorem 4.3 Suppose that ( , , )f t x µ  of ( E µ ) is of 2C  on Q Dµ× , That is, 

( , , )xf t x µ′  and ( , , )f t xµ µ′  are continuously differentiable in Q Dµ× . Then the 

solution 0 0( , , , )x t t x µ  of ( E µ ) is continuously differentiable on 0 0( , , , )t t x µ  in 

some neighborhood. Moreover, 0 0

0

( , , , )x t t x
t

µ∂

∂
, 0 0

0

( , , , )x t t x
x

µ∂

∂
 and 0 0( , , , )x t t x µ

µ
∂

∂
 

are respectively the solutions of the following IVP 

0 0( , ( , , , ))xz f t x t t x zµ′′ = , 0 0 0( ) ( , , )z t f t x µ= − ;          (F1) 

0 0( , ( , , , ))xz f t x t t x zµ′′ = , 0( ) nz t I= ;               (F2) 

0 0 0 0( , ( , , , )) ( , ( , , , ))xz f t x t t x z f t x t t xµµ µ′ ′ ′= + , 0( ) n sz t O ×= .      (F3) 

Proof. By Theorem 4.2, 0 0( , , , )x t t x µ  is continuously differentiable on its arguments 

0 0( , , , )t t x µ . Then, we take derivatives on both side of  

0
0 0 0 0 0( , , , ) ( , ( , , , ), )

t

t
x t t x x f s x t t x dsµ µ µ= + ∫  

to get (F1)-(F3) immediately.   
 
Remark 4.4 The IVP (F1)-(F3) are all linear systems that are seemly easy to solved. 

However, they are only conceptual important because 0 0( , ( , , , ))xf t x t t x µ′  and 

0 0( , ( , , , ))f t x t t xµ µ′  are unknown without knowing solution 0 0( , , , )x t t x µ .  

 

Remark 4.5 The condition f  being 2C  both in Theorem 4.2 and Theorem 4.3 can 

be replaced by a mild condition f  being continuously differentiable. However, the 
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present proof no longer workable and a more complicated method will be taken.  
 
3. Continuation Theorem 
 
1)  Motivation Example for Continuation 

 
If we apply Picard theorem or Peano theorem to the following Riccati equation:   

2 2

(0) 0
x t x
x
′ = +


=

, 

we find:   

•  1 {( , ) : | | 1, | | 1}Q t x t x= ≤ ≤ , 
1

2 2

( , )
max | | 2
t x Q

M t x
∈

= + =  ⇒  1 min{ , } 2bh a
M

= = ; 

•  2 {( , ) : | | 2, | | 2}Q t x t x= ≤ ≤ , 
2

2 2

( , )
max | | 8
t x Q

M t x
∈

= + =  ⇒  2
1min{ , }
4

bh a
M

= = . 

Some interesting phenomenon arises: 1 2Q Q⊂ , but 1 2h h> !  

Conclusion: 
 
•  This example motivates us that the solution, which is ensured by both Picard 

theorem and Peano Theorem, can be continuable, e.g. 2 2[ , ]h h− 1 1[ , ]h h⊂ − ; 

•  Both Picard theorem and Peano theorem are local results. It tells nothing 
about information on the length of existence of interval. We have to develop a 
new result to characterize continuation properties –Continuation Theorem.  

 
2) Some Notions 
 

Definition 4.1 : nf G R→ , where G  is an open set of nR R× , is said to satisfy a 

local Lipschitz condition if for any 0 0( , )t x G∈ , there exists a neighborhood 

0 0( , )t x ∈U G⊂  such that f  satisfies a Lipschitz condition on U .  

 

Definition 4.2 Let ( )x t  be a solution of the IVP ( E ) on ( , )α β . If there exists the 

other solution ( )x t  of the IVP ( E ) on ( , )α β  such that  

•  ( , ) ( , )α β α β⊃ , but ( , ) ( , )α β α β≠ ; 

•  ( ) ( )x t x t≡  for ( , )t α β∈ , 
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we say that ( )x t ( ( , )t α β∈ ) is continuable, and ( )x t  is said to be continuation of 

( )x t  on ( , )α β . We say that a solution ( )x t  is non-continuable if no such 

continuation exists. That is, ( , )α β  is a maximal interval of existence of ( )x t . 

Denoted by max ( , )I ω ω− += .  

 
2) Continuation Process 
 

Consider the IVP ( E ), where : nf G R→  is continuous and local Lipschitz. 

For the case where 0t t>  only, 0t t<  is similar. 

•  0 0( , )t x G∀ ∈  ⇒  The solution ( )x t  exists on 0 0 0 0: [ , ]I t t h= +  with 00 >h  

by Picard theorem, so 1( )x t  with 1 0 0t t h= +  exists and 1 1( , ( ))t x t G∈ ; 

•   If 1 1( , ( ))t x t G∈  is an interior point of G , then we apply Picard theorem at this 

point and have a new interval 1 1 1 1: [ , ]I t t h= +  with 01 >h , on which ( )x t  

exists. Therefore 2( )x t  with 2 1 1t t h= +  exists and 2 2( , ( ))t x t G∈ ; 

•   If 2 2( , ( ))t x t  is an interior point of G , then we repeat the step 2 to get an 

interval 2 2 2 2: [ , ]I t t h= +  with ,02 >h ; to get : [ , ]j j j jI t t h= +  with 

0>jh on which ( )x t  exists. Then ( )x t  is now extended to 
1

j

kk
I

=
∪ ; 

•   If G  is open and bounded, jI  is smaller and smaller because ( )x t → G∂ , 

G∂  is a boundary of G ; 
     

If G  is closed and bounded (compact), the continuation will terminate for some 

step kj =  because ( , ( ))k kt x t  is on G∂ , which can not be applied by Picard 

theorem anymore.   
 

Remark 4.6 a) We conclude from the process that in all cases, maxI  can be found. If 

G  is open, which is usually assumed, then maxI  must be open;  
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b) For f  with different 0 0( , )t x G∈ , maxI  might be different! We hope to know 

what conditions assure the same maxI  for all 0 0( , )t x G∈ . This is a real concern in 

ODE, which is referred as a global existence!!    

c) In some case, ( )x t  will blow up at finite time (finite escape). 

Example 
2

(0) 1
x x
x
′ =


=

 has a solution 1( )
1

x t
t

=
−

 with 
1

lim ( )
t

x t
−→

= ∞ , max ( ,1)I = −∞ . 

 
Remark 4.7 The process of continuation is nothing special except for its asymptotic 
behavior of solution. This is a real concern of continuation process.  
 
3) Continuation Theorem 
 

Theorem 4.4 (Continuation Theorem) Suppose that G  is open in nR R× , 

: nf G R→  is continuous and local Lipschitz. Then every solution of ( E ) has 

continuation up to the boundary of G . More precisely, if max: ( , ) nx I Rω ω− += →  is 

the solution passing through 0 0( , )t x G∈ , then for any compact set K G⊂  there 

exist 1t  and 2t  with 1 0 2t t t< <  such that 1 1( , ( ))t x t K≠ , 2 2( , ( ))t x t K≠ .  

 
Remark 4.8 This theorem says that any solution starting at point in G  can be 
extended continuously to G∂ , which can also be formulized as follows. 

1lim{ ( ( ), ) || ( ) ||}
t

d P t G P t
ω ±

−

→
∂ + = ∞ ,                  (F4) 

where ( ) ( , ( ))P t t x t= ; d  is a distance between ( )p t  and G∂ ; 
1

2 2 2|| ( ) || ( ( ))p t t x t= + . 

If nG R R= × , then G∂  is an empty set. i.e. 1( ( ), ) 0d P t G −∂ = , (F1) becomes 
____

lim || ( ) ||
t

P t
ω ±→

= ∞ . 

It means that either max ( , )I = −∞ ∞  (global existence) or if max ( , )I ω ω− += , where 

ω+ < ∞  and ω− > −∞ , then 
____

lim || ( ) ||
t

x t
ω ±→

= ∞  (finite escape). 
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Proof of Theorem 4.4 We prove the case of 0[ , )t ω+  only since 0( , ]tω−  is similar.  

If ω+ = ∞ , then there exists 2 0t t>  s.t. 2 2( , ( ))t x t K∈  because K  is bounded 

in nR R× . If ω+ < ∞ . We show it by contradiction. Assume that there exists a 

compact K G⊂  such that ( , ( ))t x t K∈  for all 0[ , )t t ω+∈ . Since f  is bounded 

(say M ) on the compact set K  because f  is continuous on K , then we have  

|| ( ) ( ) || | || ( , ( )) || | | |
t

t
x t x t f s x s ds M t t− ≤ ≤ −∫



  . 

It shows that f  is uniformly continuous on 0[ , )t ω+ . Then, ( ) lim ( )
t

x x t
ω

ω
+

+ →
=  

exists and is finite. Moreover, ( , ( ))x Kω ω+ + ∈  because K  is closed. Then, 

( , ( ))x K Gω ω+ + ∈ ⊂  is an interior point of G , which shows that it is continuable at 

ω +  by Picard theorem. This contradicts the maximality of maxI .   

 
Remark 4.9 If no local Lipschitz, continuation is still workable. However, this 
continuation is not unique.  
 

Example 4.1 If ),( xtfx =′ , where Cf ∈  and Mxtf ≤||),(||  for all nRRxt ×∈),( , 

show that for any 0 0( , )t x , the solution ( )x t  has max ( , )I = −∞ ∞ . 

Proof For any 0 0( , )t x , we have 
0

0( ) ( , ( ))
t

t
x t x f s x s ds= + ∫ , and then  

0
0 0 0|| ( ) || || || | || ( , ( ) || | || || | |

t

t
x t x f s x s ds x M t t≤ + ≤ + −∫ . 

Show by contradiction. If 0t t ω+≤ <  with ω+ < ∞ , then  

0 0|| ( ) || || || ( )x t x M tω+≤ + − < ∞  ⇒  
____

lim || ( ) ||
t

x t
ω +→

< ∞ . 

This contradicts Continuation theorem (see Remark 4.5). It must have ω+ = ∞ . It is 

similar to show the case of 0t tω− < ≤  with ω− > −∞ .   
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Example 4.2 All solutions of the Riccati equation 2 2x t x′ = +  have a finite escape.  

Solution Only show 0[ , )t ω+  with ω+ < ∞ . It is similar to show 0t tω− < ≤  with 

ω− > −∞ . If 0ω+ ≤ , then ω+ < ∞ . If 0ω+ > , then there exists 1 0t >  such that  

1 0[ , ) [ , )t tω ω+ +⊆ . Then we have  

2 2
1( ) ( )x t t x t′ ≥ + , 1[ , )t t ω+∈  ⇔  2 2

1

( )
( )

d x x dt
t x x

≥
+

, 1[ , )t t ω+∈ . 

Integrating on both sides, we obtain  

1
1

1 1 1

( )1 ( )[arctan arctan ] 0
x tx t t t

t t t
− ≥ − ≥ , 1[ , )t t ω+∈ . 

From the above it yields 1
1

0 t t
t
π

≤ − ≤ , 1[ , )t t ω+∈ . That is, 1
1

0 t
t
πω+< ≤ + < ∞ .   

 
7.  A Stronger Version of Continuous Dependence on Initial State 
 
1) Lipschitz Condition on a Compact Set 
 

Lemma 4.1 Suppose that G  is open in nR R× , : nf G R→  is continuous and 

local Lipschitz. Then for any compact set K G⊂  there exists 0L >  s.t.  

|| ( , ) ( , ) || || ||f t y f t x L x y− ≤ − , for all ( , ), ( , )t y t x K∈ . 

Proof. By contradiction. If not, there exist ( , ), ( , )n n n nt x t y K∈  s.t.  

|| ( , ) ( , ) || || ||n n n n n nf t y f t x n x y− > − ( , )n nt x , n N +∈ .        (F5) 

Since f  is bounded on K  with M , it follows that  

2|| ||n n
Mx y
n

− ≤ , n N +∈ .                    (F6) 

Since ( , ), ( , )n n n nt x t y K∈  have the convergent subsequences by Bolzano- 

Weierstrass, without loss of generality, say ( , ), ( , )n n n nt x t y K∈  themselves. Let 

lim ( , ) ( , ) lim ( , )n n n nn n
t x t x t y

→∞ →∞
= =  by (F6). Then, there exists a neighborhood V  

with ( , )t x V K G∈ ⊆ ⊂  s.t. f  satisfies a Lipschitz condition on V  by assumption. 
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However, (F5) contradicts the Lipschitz condition on V .    
 
Remark 4.10 Lemma 4.1 shows that Local Lipschitz ⇔  Lipschitz on any compact 
set.  
 
2) A Stronger version of Continuous Dependence Theorem on Initial Value 
 

Theorem 4.5 Suppose that G  is open in nR R× , : nf G R→  is continuous and 

local Lipschitz. Let 0 0( , , )x t t x  be a solution of ( E ) defined on 0[ , ]t β , β ω+< , 

and 0 1( , , )x t t x  be a solution of the following IVP:  

0 1

( , )
( )

x f t x
x t x
′ =

 =
.                          ( 1E ) 

Then for 0ε∀ > , there exists 0η >  s.t. 1 0|| ||x x η− <  ⇒  0 1( , , )x t t x  is also 

defined on 0[ , ]t β . Moreover, we have  

0 1 0 0|| ( , , ) ( , , ) ||x t t x x t t x ε− ≤ , 0[ , ]t t β∈ . 

Proof. Choose 0ε >  small enough such that  

0 0 0{( , ) : [ , ], || ( , , ) || }K t x t t x x t t x Gβ ε= ∈ − ≤ ⊂ . 

Application of Lemma 4.1 on the compact set K  yields that f  satisfies  

0 1 0 0 1 0|| ( , , ) ( , , ) || || ||x t t x x t t x L x x− ≤ − , for ( , )t x K∈ .  

Taking 0( ) 0L te βη ε − −= > , then we conclude that the interval of existence of 

0 1( , , )x t t x  in K  must not be less than 0[ , ]t β . Show it by contradiction. If 

0 1( , , )x t t x  is defined on 0[ , ]t β  with β β< , we have  

0
0 1 0 0 1 0 0 1 0 0|| ( , , ) ( , , ) || || || || ( , , ) ( , , ) ||

t

t
x t t x x t t x x x L x s t x x s t x ds− ≤ − + −∫  

⇒  0( )
0 1 0 0 1 0|| ( , , ) ( , , ) || || || L t tx t t x x t t x x x e −− ≤ −  (Gronwall’s inequality) 

⇒   0 0( ) ( )
0 1 0 0 1 0|| ( , , ) ( , , ) || || || L t L tx t x x t x x x e eβ ββ β η− −− ≤ − <  

                     0 0( ) ( ) ( )L t L t Le e eβ β β βε ε ε− − − −= = < . 

This shows that the point 0 1( , ( , , ))x t x Kβ β ∈ , which can be extended further by 
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Picard theorem. This is contradiction. Then applying Gronwall’s inequality once more 
yields   

0 0( ) ( )
0 1 0 0 1 0|| ( , , ) ( , , ) || || || L t t L t tx t t x x t t x x x e eη ε− −− ≤ − ≤ < , whenever 1 0|| ||x x η− < .  

Therefore, 0 0( , , )x t t x  is a continuous function of 0x .   

 

Remark 4.11 In fact, 0 0( , , )x t t x  is also Lipschitz on 0x  because there exists a 

constant R  s.t.  

0 0 0 1 0 1|| ( , , ) ( , , ) || || ||x t t x x t t x R x x− ≤ − , 0[ , ]t t β∈ . 

However, the Lipschitz constant 0 0( ) ( )( ) L t t L tR R t e e β− −= = ≤  depends on the finite 

interval 0[ , ]t β  with β < ∞ . If β = ∞ , this property is not true!!! See 

0( ) 0L te βη ε − −= →  as β →∞ . That is, for any 0ε > , we can’t find any 0η >  to 

have a desired property!!! Continuous dependence on data for 0[ , )t ∞  is a global 

issue that needs an additional condition for sure. It is referred to Lyapunov stability 
theory.   
 

Remark 4.12 The IVP ( E ) is always wellposed if f  is continuous and locally 

Lipschitz on any finite time interval 0[ , ]t β .  

 
6. Summary  
 
•  Under mild conditions, the solutions depend continuously on the data for any finite 

closed interval. 
•  A good math model should have continuous dependence and differentiability on its 

data. 
•  Continuously dependence and differentiability are local results.  
•  Continuation theorem is a bridge connecting the local and the global. 
 
Homework:  
 

1) If ),( xtfx =′ , where ( , )f t x  is continuous and || ( , ) || || ||f t x M x≤  for all 

nRRxt ×∈),( , show that for any 0 0( , )t x , the solution ( )x t  has max ( , )I = −∞ ∞ . 

2) All solutions of the Riccati equation 21x x′ = +  have a blow up at a finite time.  
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