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1. Motivation
1) Continuous Dependence on Data

e A good mathematical model should have continuous solutions w.r.t. the initial

data t,, x, and the system data x of f(t, x, «)-small errors in data yield
solutions that are close (over some finite time interval) - Wellposedness!
e This property is called continuous dependence on data. This continuously

dependent property is not possible at points where the solution is not unique!
Why ?

Remark 4.1. The general form of the IVP is described by

X'=f(t, X, 1)
— ! (Eu)
X(t,) =X,
where = (1, 1, 1t,)" €R*. Let z=(x,u) e R"xR®, then
2= f(t2) X'=ftxp) u=0
& : (H,)
Z(to):Zo X(to):XO’ /J(to):/u

It is easy to show (Homework):

a) z(t) = (x(t), u(t)) is a solution of (H,) < x(t) is a solution of (E,) and
u(t) = u;

b) If (E,) has a unique solution, so does (H ).
Then (H ) has the same structure to (E ). The only difference is their dimensions.

For simplicity of notation, we still consider (E) just regarding t, and X, as

parameter variables.



2) Sensitivity of Variation on Data

o It is natural to ask differentiability for solutions w.r.t. data to characterize the
sensitivity of variation on data — Differentiability Theorem.

1. Continuous Dependence (Wellposedness)

1) Wellposedness. The IVP (E) is called wellposed if there exists a unique solution

X(t, ty, X,) which depends continuously on (t,, X,).

2) Continuous Dependence on Initial Data (t,, X,)
The real initial value (t,, x,) is obtained by measurement. Suppose the
measured initial value is (t,, x,) satisfying the following error condition.
h b
t,—tl|<—=; |IX,—Xo|<=,
| 0 0 | 2 ” 0 0 ” 2
where (tJ, xJ) is the nominal initial value such that the following VP

{x':f(t,x) (E.)

X(tg) = Xg
has a unique solution x(t,t7, Xg) in
Q={(t,x)eRxR": |t—t)|<a, || x—xJ| <b}.
Let U ={(t0,xo)eRxR”:|t0—t§|sg,|lxo—x§ ||Sg}gQ. Then, we discuss
the continuous property of x(t, t,, X,) of (E) in the defined domain as follows.
G={(t,t0,x0)eR><R><R”:|t—t8|£g;(t0,xo)eU}.
Theorem 4.1 Suppose that f (t,x) is continuous; Lipschitzon Q and (t,, x,) €U .
Then the solution x(t,t,, X,) of (E) iscontinuouson (t,t,, x,)€G.
Proof. First, we construct the Picard approximations {x,(t,t,, X,)}(neN") on
teft,—h,t,+h] as follows.
Xo(t, ty, Xo) =X%X,, (L, ty, %X,) G
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X, (t, o) Xo) = X, +j:0 £(s,%,(5,tg, X)) ds, (L1, %,)eG
X1 (t, T, Xg) = X, +j:0 F(s,%, (5, g, X,))dS, (L1, X,) €G

Remark 4.2 For each ne N*, Xx,(t,t,, X,) is continuous on (t,, X,) for the fixed

h h : .
te[td——,t0+—] . Therefore, x (t,t,,x,) for each neN* is continuous on
0 2 0 2 n 0 0

(t,t,, X,) eG.

Remark 4.3 The reason of defining U and G as above. Since (t,, Xx,)€U in
{x,(t, t;, X,)}, the interval |[t—t,|<h varies with t,. Therefore, the intervals of

{x,(t, t,, x,)} foreach ne N" may not be the same in general. For a rigorous sense,

we may find

h h
[tS—E,t§+—]: N [t,—h,t,+h]

lto—tl <5
: . : h
that is a common interval of {x,(t t,, x,)} by using |t0—t§|s5. Therefore,

h h, . . :
te[t ——,to +—] isareasonable common interval. Thatis, (t,t,, x,)eG.
0 2 0 2 0 0

(Cont. of Proof for Theorem 4.1) It is the same to show that the Picard
approximations {x,(t,t,, x,)} is uniformly convergent to a function x(t,t,, x,). That
is,

MLr‘I—l MLr‘I—l

”Xn(tvto’Xo)_x(t’tovxo)” < |t to|

(t=to | +]tg—t )"

MLn—l (D D) MLn—l

n! n!

Meanwhile, x(t,t,,x,) is obviously a solution of E, which is continuous on

(t,t,, x,) G because x,(t,t,,x,) for each neN" is continuous on

(t,t,,X,)eG. o



2. Differentiability

Theorem 4.2 Suppose that f(t,x) of (E)isof C* on Q and (t,,X,)eU . Then

the solution x(t, t,, x,) of (E) is continuously differentiable on (t,t,, x,)eG.

Proof. By Theorem 4.1, we take the Picard approximations

Xmﬂiwx&:xMJ:f@mJ&Q”%»%,neN+,CJmXQeG,
which is continuous on (t,t,, x,)€G for each ne N and uniformly convergent
to the solution x(t, t,, X,) of (E), which is continuous on (t, t,, x,) G.

Since f (t,x) is also continuously differentiable on Q, we construct an

associated Picard matrix sequence as follows.
Yot X)) =1, +j: F1(5,%, (5, 1y, Xo))Y, (t to, X, )ds |

where neN™ and (t,t,, X,) €G. It is similar to show that {Y, (t,t,, x,)} is well
defined, continuous on (t,t,, X,) € G and uniformly convergent to Y (t,t,, x,) that

is continuous on (t, t,, Xx,) G (Homework).

OXo(t, 1y, %)

Next, we remark =1,=Y,(t, t,, X,). Then by the definitions of

XO
{x,(tt,, x,)} and {¥,(t,t,, X,)}, we conclude by inductionon ne N that

oX,(t, ty, X,)

=Y, (t ty, X,), (t,t,,X,)eG,foreach neN".
0X,

Therefore, {Y, (t,t,, X,)} is a derivative sequence of {x,(t,t,,X,)} wrt x,. Since

{x,(t t,, x,)} and {Y (t t,, x,)} are both uniformly convergent, their limits are

ox(t, ty, X
——L—LiﬁzYGmed,ameQeG.
0X,
oX(t, ty, Xy) . )
Then we conclude that 0y is continuous on (t,t,, X,) €G.
XO

It is similar to show that



a Xn+l(t’ tO’ XO)

t ., OX, (L, ty, X,)
8'[0 __f(to,Xo)+J.t0 fx(s1xn(s’t0’xo))—ds

ot,
is well defined, continuous and uniformly convergent on (t,t,, x,)€G. Then we

oX(t, ty, X,) . )
conclude that —Qr is continuous on (t, t,, X,) G (Homework). o

tO
We have simultaneously proved the following theorem.

Theorem 4.3 Suppose that f(t,x, ) of (E,) is of C? on Qx D,, That is,
fo(t,x, 1) and f/(t,x, ,) are continuously differentiable in QxD, . Then the
solution x(t,ty, o, ) of (E,) is continuously differentiable on (t,t,, X, #) in

OX(t, ty, X, 1) OX(t, by, X, 1) and Ox(t, ty, X, 1)

some neighborhood. Moreover, P 5 P
0 Xo H

are respectively the solutions of the following IVP

7'= fx'(t,x(t,to,Xo,,u))z, 2(t,) =—f(ty, %o, 1) (F1)
2= 1 (X X0 )2, 2(t) =1, (F2)
2 = £ X( g X )2+ T X X0 )s 2() =0, (F3)

Proof. By Theorem 4.2, x(t,t,, X,, &) is continuously differentiable on its arguments

(t,t,, X,, &) . Then, we take derivatives on both side of

t
X(tto, Xo, 1) =X+ [ £(8,X(t o, Xo, 42), 1)
to get (F1)-(F3) immediately. o

Remark 4.4 The IVP (F1)-(F3) are all linear systems that are seemly easy to solved.

However, they are only conceptual important because f'(t, x(t,t,,X,,4)) and

f(t, x(t,ty, Xy, 1)) are unknown without knowing solution x(t,t,, X,, £) .

Remark 4.5 The condition f being C? both in Theorem 4.2 and Theorem 4.3 can

be replaced by a mild condition f being continuously differentiable. However, the
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present proof no longer workable and a more complicated method will be taken.
3. Continuation Theorem
1) Motivation Example for Continuation

If we apply Picard theorem or Peano theorem to the following Riccati equation:

X' =t +x?
x(0)=0

we find:

o Q ={t,X):[t|<L|x|<1, M:(trr1)a>Q<|t2+x2|:2 = hlzmin{a,%}:z;

, b, 1
={(t,x):|t|<2,|x|<2}, M = max |[t*+x*|=8 h, =min{a,—}==.
o Q={(t):ItI<2[xI<B, M= max [+ |=8 = h,=minfa,—}="
Some interesting phenomenon arises: Q, = Q,, but h, >h,!
Conclusion:

e This example motivates us that the solution, which is ensured by both Picard

theorem and Peano Theorem, can be continuable, e.g. [-h,, h,] <[-h,, h,];

e Both Picard theorem and Peano theorem are local results. It tells nothing
about information on the length of existence of interval. We have to develop a
new result to characterize continuation properties —Continuation Theorem.

2) Some Notions

Definition 4.1 f:G —>R", where G is an open set of RxR", is said to satisfy a
local Lipschitz condition if for any (t,,x,)eG, there exists a neighborhood

(t,, X,)eU <G suchthat f satisfies a Lipschitz conditionon U .

Definition 4.2 Let x(t) be a solution of the IVP (E) on (e, f). If there exists the
other solution %(t) ofthe IVP (E)on (&, B) such that

o (@ B)>(a p),but (@ B)#(a p);

o X(t)=x(t) for te(a, p),



we say that x(t) (t € («, B)) is continuable, and X(t) is said to be continuation of

x(t) on (&, ). We say that a solution x(t) is non-continuable if no such
continuation exists. That is, («, #) is a maximal interval of existence of x(t).

Denoted by 1, =(0_,@,).
2) Continuation Process

Consider the IVP (E), where f:G — R" is continuous and local Lipschitz.

For the case where t>t, only, t<t, issimilar.

V(t,, X,) €G = The solution x(t) exists on I,:=[t, t,+h,] with h,>0

by Picard theorem, so x(t,) with t,=t,+h, existsand (t,, x(t,))eG;

If (t;, x(t,)) €G is an interior point of G, then we apply Picard theorem at this
point and have a new interval I, :=[t,,t;+h,] with h, >0, on which x(t)
exists. Therefore x(t,) with t,=t,+h, existsand (t,, x(t,))eG;

o If (t,,x(t,)) is an interior point of G, then we repeat the step 2 to get an
interval 1,:=[t,, t,+h,] with h,>0,---; to get I,:=[t;,t;+h;] with

i
h; >0 onwhich x(t) exists. Then x(t) is now extended to Hlk;

e If G is open and bounded, I. is smaller and smaller because x(t) — oG,

]

oG isaboundary of G;

If G is closed and bounded (compact), the continuation will terminate for some

step j=k because (t,,x(t,)) is on 0G, which can not be applied by Picard

theorem anymore.

Remark 4.6 a) We conclude from the process that in all cases, 1_.. can be found. If

max

G is open, which is usually assumed, then 1_.. must be open;

X



b) For f with different (t,, x,)eG, I might be different! We hope to know

max

what conditions assure the same 1., forall (t,, x,)eG. This is a real concern in

ODE, which is referred as a global existence!!

c) In some case, x(t) will blow up at finite time (finite escape).

’ 2

Example {X R

. 1 . .
has a solution x(t)=—— with limx(t)=o, I, =(-x,1).
‘) -1 (=1— with limx(t) (~o0,1)

Remark 4.7 The process of continuation is nothing special except for its asymptotic
behavior of solution. This is a real concern of continuation process.

3) Continuation Theorem

Theorem 4.4 (Continuation Theorem) Suppose that G is open in RxR",
f:G—>R" is continuous and local Lipschitz. Then every solution of (E) has
continuation up to the boundary of G. More precisely, if x:1 , =(o_,0,)>R" is
the solution passing through (t,, x,) € G, then for any compact set K <G there

exist t, and t, with t, <t,<t, suchthat (t,, x(t,) =K, (t,, x(t,)) =K.

Remark 4.8 This theorem says that any solution starting at point in G can be
extended continuously to oG, which can also be formulized as follows.

Jim{d(P(), 0G) "+ P} =<0, (F4)

1

where P(t)=(t, x(t)); d isadistance between p(t) and 8G; || p(t)|=(t?+x*(t))2.

If G=RxR",then 6G isanempty set.i.e. d(P(t),0G)™" =0, (F1) becomes
lim [ P@®) [l =c0.
It means that either 1, = (-, ©) (global existence) or if | . =(o_,®,), where

®, <o and @_>—oo, then th || () ||=0 (finite escape).



Proof of Theorem 4.4 We prove the case of [t,, w,) onlysince (@ ,t,] issimilar.
If @, =0, then there exists t, >t, s.t. (t,, x(t,)) e K because K is bounded
in RxR". If @, <. We show it by contradiction. Assume that there exists a
compact K <G such that (t, x(t))eK for all te[t,, @,). Since f is bounded
(say M ) on the compactset K because f iscontinuouson K, then we have
IIX(t)—X(f)IISILtII f(s,x(s)) [lds|<M [t-T].
It shows that f is uniformly continuous on [t,, @,). Then, x(w+):tllr2 x(t)
exists and is finite. Moreover, (@,,X(w,))eK because K is closed. Then,
(w,,X(w,)) e K< G isan interior point of G, which shows that it is continuable at

o, by Picard theorem. This contradicts the maximality of 1 . . o

Remark 4.9 If no local Lipschitz, continuation is still workable. However, this
continuation is not unique.

Example 4.1 If x'=f(t,x), where feC and || f(t,x)||<M forall (t,x)eRxR",
show that for any (t,, X,), the solution x(t) has I, = (-, »).
Proof For any (t,, x,), we have x(t) =X, +I:0 f (s,x(s))ds, and then

IX@ < 1 I+, I (8. x(8) s 1< 1%, 1+M [t=t, .

Show by contradiction. If t;<t<w, with ®, <o, then
XN 1% [ +M (@, ~te) <o = Tim [[x(t) || <oo.

This contradicts Continuation theorem (see Remark 4.5). It must have @, =. Itis

similar to show the case of @ <t<t; with @ >-. o



Example 4.2 All solutions of the Riccati equation x'=t*+x* have a finite escape.

Solution Only show [t,, @,) with @, <oo. It is similar to show @ <t<t, with
o >-o. If o, <0, then @, <. If @, >0, then there exists t, >0 such that

[t, @,)c[t,, @.). Then we have

d x(x)
X(t) >t +x%(t), telt,0,) & ————2—>dt, telt,m,).
() 1 () [1 +) t12+X2(X) [l +)
Integrating on both sides, we obtain
X(t
l[arctanﬂ—arctanﬁ]zt—tl20, telt, w,).
t1 t1 t1

From the above it yields Ost—tlstz, telt, ). Thatis, 0<a)+St1+t£<oo. O
1 1

7. A Stronger Version of Continuous Dependence on Initial State
1) Lipschitz Condition on a Compact Set
Lemma 4.1 Suppose that G is open in RxR", f:G—R" is continuous and

local Lipschitz. Then for any compact set K <G there exists L >0 s.t.

| f(t,y)—fE,x)|I<L|x=y]l, forall (ty), (t,x)eK.
Proof. By contradiction. If not, there exist (t., x,), (t,,y,)eK s..

Ift, y) =t x)I>nlix, =y, I (t,, x,), neN". (F5)
Since f isboundedon K with M, it follows that

I%,-y, <20 nen, (F6)

Since (t,,Xx,), (t,,y,)eK have the convergent subsequences by Bolzano-
Weierstrass, without loss of generality, say (t,, x,), (t,,y,) €K themselves. Let
rI1i%r[1o(tn,xn):(t_,Y):!iﬁrg(tn,yn) by (F6). Then, there exists a neighborhood V

with (t,X)eV cKcG s.t. f satisfies a Lipschitz condition on V by assumption.
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However, (F5) contradicts the Lipschitz conditionon V. o

Remark 4.10 Lemma 4.1 shows that Local Lipschitz < Lipschitz on any compact
set.

2) A Stronger version of Continuous Dependence Theorem on Initial Value

Theorem 4.5 Suppose that G is open in RxR", f:G—R" is continuous and
local Lipschitz. Let x(t,t,, x,) be a solution of (E) defined on [t,, 5], f<w,,

and Xx(t, t,, x,) be asolution of the following IVP:

{x’:f(t,x) (E.)

X(to)le .
Then for V&>0, there exists >0 s.t. ||x,—X,|l<n = Xx(t t,, X,) is also

defined on [t,, #]. Moreover, we have

[ X(t to, X)) = X(t to, Xp) [[< &, telty, Al
Proof. Choose >0 small enough such that
K={(t,x):te[t, Al I x=x{t, t,, x))||<e}cG.

Application of Lemma 4.1 on the compact set K vyieldsthat f satisfies
Xt 5, %) = X(E, T, X) [ < LIl X, =%, [, for (t,x) e K.

Taking 7=ce """ >0, then we conclude that the interval of existence of
X(t, ty, x,) In K must not be less than [t,, #]. Show it by contradiction. If
x(t, t,, x,) isdefinedon [t,, ] with B <, we have

|| X(t, tg, X,) = X(t, to, Xo) [[ <[] X, =X, || +Lj:0|| X(S, ty, X)) —X(s, ty, X,) || ds

L(t—t

= I x(t, ty, X)) = X(t, ty, X) || X, — X%, || € 2 (Gronwall’s inequality)

= [IX(B. to, X)) = X(B, tg, Xo) |1 X, — X, [ €77 < et

—L(B-t,) L(B- 7
= g tIGLFt) _ LA

This shows that the point (5, x(8,t,, X,)) € K, which can be extended further by
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Picard theorem. This is contradiction. Then applying Gronwall’s inequality once more
yields

X6t X)) =Xt X )< % = x. [|[e" <pne™ ™" < ¢ whenever ||x, —x.|[<7.
01 Xy ar Xo 1~ Ao n 1~ %o n

Therefore, x(t,t,, X,) isa continuous function of x,. o

Remark 4.11 In fact, Xx(t,t,, X,) is also Lipschitz on x, because there exists a
constant R s.t.

Xt t, X) = X(t oy X, 1< Rl g =, I, telty, A1.

L(t-t L(B-t

? <e#) depends on the finite

However, the Lipschitz constant R=R(t)=¢e
interval [t,, /] with f<o . If f=o0, this property is not truel!! See

-L(B-to)

n=ce —0 as f—oo. That is, for any ¢>0, we can’t find any >0 to

have a desired property!!! Continuous dependence on data for [t,, o) is a global

issue that needs an additional condition for sure. It is referred to Lyapunov stability
theory.

Remark 4.12 The IVP (E) is always wellposed if f is continuous and locally

Lipschitz on any finite time interval [t,, £].

6. Summary

e Under mild conditions, the solutions depend continuously on the data for any finite
closed interval.
e A good math model should have continuous dependence and differentiability on its
data.
e Continuously dependence and differentiability are local results.
e Continuation theorem is a bridge connecting the local and the global.

Homework:
1) If x'=f(t,x), where f(t,x) is continuous and || f(t,x)||<M || x| for all
(t,x) e RxR", show that for any (t,, X,), the solution x(t) has I, = (-0, ).

2) All solutions of the Riccati equation X' =1+ x> have a blow up at a finite time.
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